Exercise 34

Verify, by a geometric argument, that the largest possible choice of δ for showing that $\lim_{x\to 3} x^2 = 9$ is $\delta = \sqrt{9+\varepsilon} - 3$.

Solution

Graph the function x^2 versus x.

There seems to be a choice to select $3 - \delta$ as $\sqrt{9 - \varepsilon}$ or $3 + \delta$ as $\sqrt{9 + \varepsilon}$. However, because the graph of x^2 curves upward as x increases, the distance from 3 to $\sqrt{9 - \varepsilon}$ is larger than the distance from 3 to $\sqrt{9 + \varepsilon}$. We select the smaller distance so that the y-values remain between $9 - \varepsilon$ and $9 + \varepsilon$ as the x-values go between $3 - \delta$ and $3 + \delta$.

$$3 + \delta = \sqrt{9 + \varepsilon}$$

Solving for δ ,

$$\delta = \sqrt{9 + \varepsilon} - 3.$$