Exercise 34

Verify, by a geometric argument, that the largest possible choice of δ for showing that $\lim _{x \rightarrow 3} x^{2}=9$ is $\delta=\sqrt{9+\varepsilon}-3$.

Solution

Graph the function x^{2} versus x.

There seems to be a choice to select $3-\delta$ as $\sqrt{9-\varepsilon}$ or $3+\delta$ as $\sqrt{9+\varepsilon}$. However, because the graph of x^{2} curves upward as x increases, the distance from 3 to $\sqrt{9-\varepsilon}$ is larger than the distance from 3 to $\sqrt{9+\varepsilon}$. We select the smaller distance so that the y-values remain between $9-\varepsilon$ and $9+\varepsilon$ as the x-values go between $3-\delta$ and $3+\delta$.

$$
3+\delta=\sqrt{9+\varepsilon}
$$

Solving for δ,

$$
\delta=\sqrt{9+\varepsilon}-3 .
$$

